The world's scientific and social network for malaria professionals
Subscribe to free Newsletter | 11111 malaria professionals are enjoying the free benefits of MalariaWorld today

Central Africa

NOT Open Access | The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa

September 23, 2021 - 07:55 -- NOT Open Access
Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS
Insect Biochem Mol Biol. 2021 Sep 14;138:103647

The overexpression and overactivity of key cytochrome P450s (CYP450) genes are major drivers of metabolic resistance to insecticides in African malaria vectors such as Anopheles funestus s.s. Previous RNAseq-based transcription analyses revealed elevated expression of CYP325A specific to Central African populations but its role in conferring resistance has not previously been demonstrated. In this study, RT-qPCR consistently confirmed that CYP325A is highly over-expressed in pyrethroid-resistant An. funestus from Cameroon, compared with a control strain and insecticide-unexposed mosquitoes.

Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa

August 10, 2021 - 17:13 -- Open Access
Longo-Pendy NM, Tene-Fossog B, Tawedi RE, Akone-Ella O, Toty C, Rahola N, Braun JJ, Berthet N, Kengne P, Costantini C, Ayala D
Sci Rep. 2021 Aug 4;11(1):15781

In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns.

Preliminary validation of the use of IgG antibody response to Anopheles gSG6-p1 salivary peptide to assess human exposure to malaria vector bites in two endemic areas of Cameroon in Central Africa

January 6, 2021 - 13:01 -- Open Access
Cheteug G, Elanga-Ndille E, Donkeu C, Ekoko W, Oloume M, Essangui E, Nwane P, NSango SE, Etang J, Wanji S, Ayong L, Eboumbou Moukoko CE
PLoS One. 2020 Dec 31;15(12):e0242510

The specific immune response to the Anopheles salivary peptide could be a pertinent and complementary tool to assess the risk of malaria transmission and the effectiveness of vector control strategies. This study aimed to obtain first reliable data on the current state of the Anopheles gSG6-P1 biomarker for assess the level of exposure to Anopheles bites in high malaria endemic areas in Cameroon.

Subscribe to RSS - Central Africa