Methods
Houses were classified as 'improved' (synthetic walls and roofs, eaves closed or absent) or 'less-improved' (all other construction). Associations between housing and parasitaemia were made using mixed effects logistic regression (individual-level) and multivariable fractional response logistic regression (community-level), and between housing and malaria incidence using multivariable Poisson regression.
Results
Between November 2021 and March 2022, 4.893 children aged 2-10 years were enrolled from 3.518 houses; of these, 1.389 (39.5%) were classified as improved. Children living in improved houses had 58% lower odds (adjusted odds ratio = 0.42, 95% CI 0.33-0.53, p < 0.0001) of parasitaemia than children living in less-improved houses. Communities with > 67% of houses improved had a 63% lower parasite prevalence (adjusted prevalence ratio 0.37, 95% CI 0.19-0.70, p < 0.0021) and 60% lower malaria incidence (adjusted incidence rate ratio 0.40, 95% CI 0.36-0.44, p < 0.0001) compared to communities with < 39% of houses improved.
Conclusions
Improved housing was strongly associated with lower malaria burden across a range of settings in Uganda and should be utilized for malaria control.